Penerapan Algoritma Decision Tree Untuk Memprediksi Pengelolaan Inventaris Sarana Pembelajaran Kampus


Authors

  • Martini Martini Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Nani Agustina Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Entin Sutinah Universitas Bina Sarana Informatika, Jakarta, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v6i1.889

Keywords:

Campus Inventory; Gain Ratio; Cross Validation; Decision Tree; Average Accuracy

Abstract

UBSI as an educational institution that has learning support facilities must be able to manage campus inventory effectively. This study aims to determine the management of asset management that needs to be done, both in the form of routine maintenance and updating of goods. The UBSI Jatiwaringin branch campus only makes reports on the condition of inventory items, so it cannot determine whether the reported inventory data is updated or repaired, so far it is not known which items are prioritized based on their level of importance. The data will then be followed up by the main campus to check the inventory data report. The method used to determine inventory predictions is the Decision Tree Algorithm which has priority, location, condition, frequency, and prediction attributes. As targets in the decision tree are prediction attributes that have maintenance or renewal classes. Determination of inventory data predictions by calculating the entropy, gain, gain info, and gain ratio values ??of each attribute and resulting in the Priority attribute being the root node in the formed decision tree. This indicates that the priority attribute has a strong influence in determining whether an item is included in the maintenance or renewal class. Based on testing results using RapidMiner software with the K-Fold Cross Validation method, the Decision Tree algorithm can generate a decision model with an average accuracy of 86.67% in campus inventory management. The results of this study are expected to be useful for Jatiwaringin Campus administrators to conduct initial inspections without waiting for repairs from the main campus.

Downloads

Download data is not yet available.

References

H. Akib, N. Afina, and I. Devi, “Maintenance Management of Office Facilities and Infrastructure at Temmalebba Village Office , Palopo City,” Pinisi J. Off., vol. 1, no. 1, pp. 32–37, 2024, doi: https://doi.org/10.71309/pjor.v1i1.2325.

A. Prihantara, P. D. Abda’u, and H. M. Fauzi, “Perancangan sistem informasi inventaris barang dan aset desa berbasis website menggunakan metode prototyping,” J. Rekayasa Inf. Swadharma, vol. 4, no. 2, pp. 82–90, 2024, doi: https://doi.org/10.56486/jris.vol4no2.565.

S. A. A. Herlinda, “Manajemen Aset Tetap pada Badan Pengelolaan Keuangan Pendapatan dan Aset Daerah Kabupaten Balangan,” J. Al’iidara Balad, vol. 5, no. 2, pp. 12–22, 2023, doi: https://doi.org/10.36658/aliidarabalad.5.2.54.

D. Murdani, R. J. Oktafiani, and F. Anggraini, “Sistem informasi inventaris barang berbasis web pada sma budi mulia utama,” J. Vis. Univ. Saintek Muhammadiyah, vol. 9, no. 2, pp. 24–36, 2023, doi: https://doi.org/10.56459/jv.v9i2.71.

T. A. Puspa, S. Hadi Wijoyo, and A. Rachmadi, “Perancangan User Interface (UI) Sistem Informasi Inventaris Barang Sekolah berbasis Web menggunakan Metode Human Centered Design (HCD) (Studi Kasus: SMKN 2 Blitar),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 1892–1901, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12597

A. Iftitah and R. Setyadi, “Penerapan Algoritma C.45 Untuk Analisis Pengadaan Peralatan dan Mesin Kantor,” J. Inf. Syst. Res., vol. 4, no. 2, p. 434?442, 2023, doi: DOI 10.47065/josh.v4i2.2673.

F. Rozak, I. Irawati, H. Hasgimianti, and M. Thahir, “Inventory Management of Educational Facilities and Infrastructure At State Vocational High School 2 Pekanbaru,” Tarbawi J. Keilmuan Manaj. Pendidik., vol. 6, no. 1, pp. 29–36, 2020, doi: https://doi.org/10.32678/tarbawi.v6i01.2212.

B. R. Silaen, M. Nasution, and R. Muti’ah, “Implementation of the ABC Analysis to the Inventory Management,” Int. J. Sci. Technol. Manag., vol. 5, no. 4, pp. 816–825, 2024, doi: https://doi.org/10.46729/ijstm.v5i4.1144.

I. K. P. D. S. Putra, I. W. G. Narayana, and I. M. Sudarsana, “Sistem Informasi Pengelolaan Data Inventaris Barang Pada Kantor Perbekel Desa Kutuh Berbasis Web,” in Prosiding Seminar Hasil Penelitian Informatika dan Komputer, SPINTER, 2024, pp. 546–550. [Online]. Available: https://spinter.stikom-bali.ac.id/index.php/spinter/article/view/321/304

R. A. Tjandrida and D. A. Dermawan, “Implementasi Algoritma Decision Tree pada Sistem Informasi Manajemen Inventarisasi Fakultas Vokasi UNESA,” J. Manaj. Inform., vol. 17, no. 01, pp. 2–8, 2025, [Online]. Available: https://ejournal.unesa.ac.id/index.php/jurnal-manajemen-informatika/article/view/68862

A. Hendrawan, A. Susanto, and B. J. Tama, “Implementasi Sistem Invetaris Manajemen Menggunakan Algorit,a C4.5 pada Djaya Motor,” J. Ris. dan Apl. Mhs. Inform., vol. 06, no. 01, pp. 76–85, 2025, doi: https://doi.org/10.30998/jrami.v6i01.10039.

E. D. Sinaga, A. Windarto, Perdana, and N. R. Alfadillah, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus?: Apotek Franch Farma),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 123–131, 2022, doi: https://doi.org/10.30865/klik.v2i4.328.

R. Pratama, B. Huda, E. Novalia, and H. Kabir, “Perbandingan Algoritma C4.5 dan Naïve Bayes dalam Menentukan Persediaan Stok,” J. Metik, vol. 6, no. 2, pp. 115–122, 2022, doi: https://doi.org/10.47002/metik.v6i2.379.

M. Fajri, I. T. Utami, and M. Maruf, “Comparison of C4.5 and C5.0 Algorithm Classification Tree Models for Analysis of Factors Affecting Auction,” Indones. J. Stat. Its Appl., vol. 6, no. 1, pp. 13–22, 2022, doi: https://doi.org/10.29244/ijsa.v6i1p13-22.

S. Devi Asri and A. Miftahul Huda, “IMPLEMENTATION OF THE C5.0 ALGORITHM IN CLASSIFICATION OF SOCIAL DATA (Case Study: Eligibility of BLT Acceptance in Condong Village, Singkawang City),” Bul. Ilm. Mat. Stat. dan Ter., vol. 12, no. 3, pp. 259–268, 2023, doi: https://doi.org/10.26418/bbimst.v12i3.66693.

R. Amalia and F. Citra, Teknik Pengambilan Keputusan, 1st ed. Indonesia: Penerbit RTujuh Mediaprinting, 2022.

W. Andriyani, K. Rudi, and A. Y. Wijaya, “Analisis Data Penerimaan Peserta Didik Baru Menggunakan Cross Validation dan Algoritma Decision Tree di SMA Negeri 1 Bandung,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2951–2956, 2024, doi: https://doi.org/10.36040/jati.v8i3.9603.

P. Riama, I. Deci, and S. Volvo, Algoritma Decision Tree Untuk Klasifikasi Tingkat Kepuasan Pelanggan. YAYASAN MUNANDAR MEMBANGUN INDONESIA, 2025.

A. D. Saputra and A. Qoiriah, “Penerapan Algoritma C4 . 5 Untuk Mengatur Persediaan Stok Barang Berbasis Website,” J. Informatics Comput. Sci., vol. 03, no. 04, pp. 481–493, 2022, doi: https://doi.org/10.26740/jinacs.v3n04.p481-493.

H. Yohan, Albert Leonardo and Christnatalis, “Penggunaan Metode C4.5 Untuk Kasus Klasifikasi,” JurnalPenelitianTeknikInformatik (Jutikomp), vol. 4, no. 1, pp. 519–524, 2021, doi: https://doi.org/10.34012/jutikomp.v4i1.1643.

Wijiyanto, A. I. Pradana, Sopingi, and V. Atina, “Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa,” J. Algoritm., vol. 21, no. 1, pp. 239–248, 2024, doi: https://doi.org/10.33364/algoritma/v.21-1.1618.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Decision Tree Untuk Memprediksi Pengelolaan Inventaris Sarana Pembelajaran Kampus

Dimensions Badge

ARTICLE HISTORY

Published: 2025-12-29

Abstract View: 41 times
PDF Download: 26 times

How to Cite

Martini, M., Nani Agustina, & Entin Sutinah. (2025). Penerapan Algoritma Decision Tree Untuk Memprediksi Pengelolaan Inventaris Sarana Pembelajaran Kampus. Bulletin of Computer Science Research, 6(1), 426-433. https://doi.org/10.47065/bulletincsr.v6i1.889

Issue

Section

Articles