Penerapan Algoritma Decision Tree Untuk Memprediksi Pengelolaan Inventaris Sarana Pembelajaran Kampus
DOI:
https://doi.org/10.47065/bulletincsr.v6i1.889Keywords:
Campus Inventory; Gain Ratio; Cross Validation; Decision Tree; Average AccuracyAbstract
UBSI as an educational institution that has learning support facilities must be able to manage campus inventory effectively. This study aims to determine the management of asset management that needs to be done, both in the form of routine maintenance and updating of goods. The UBSI Jatiwaringin branch campus only makes reports on the condition of inventory items, so it cannot determine whether the reported inventory data is updated or repaired, so far it is not known which items are prioritized based on their level of importance. The data will then be followed up by the main campus to check the inventory data report. The method used to determine inventory predictions is the Decision Tree Algorithm which has priority, location, condition, frequency, and prediction attributes. As targets in the decision tree are prediction attributes that have maintenance or renewal classes. Determination of inventory data predictions by calculating the entropy, gain, gain info, and gain ratio values ??of each attribute and resulting in the Priority attribute being the root node in the formed decision tree. This indicates that the priority attribute has a strong influence in determining whether an item is included in the maintenance or renewal class. Based on testing results using RapidMiner software with the K-Fold Cross Validation method, the Decision Tree algorithm can generate a decision model with an average accuracy of 86.67% in campus inventory management. The results of this study are expected to be useful for Jatiwaringin Campus administrators to conduct initial inspections without waiting for repairs from the main campus.
Downloads
References
H. Akib, N. Afina, and I. Devi, “Maintenance Management of Office Facilities and Infrastructure at Temmalebba Village Office , Palopo City,” Pinisi J. Off., vol. 1, no. 1, pp. 32–37, 2024, doi: https://doi.org/10.71309/pjor.v1i1.2325.
A. Prihantara, P. D. Abda’u, and H. M. Fauzi, “Perancangan sistem informasi inventaris barang dan aset desa berbasis website menggunakan metode prototyping,” J. Rekayasa Inf. Swadharma, vol. 4, no. 2, pp. 82–90, 2024, doi: https://doi.org/10.56486/jris.vol4no2.565.
S. A. A. Herlinda, “Manajemen Aset Tetap pada Badan Pengelolaan Keuangan Pendapatan dan Aset Daerah Kabupaten Balangan,” J. Al’iidara Balad, vol. 5, no. 2, pp. 12–22, 2023, doi: https://doi.org/10.36658/aliidarabalad.5.2.54.
D. Murdani, R. J. Oktafiani, and F. Anggraini, “Sistem informasi inventaris barang berbasis web pada sma budi mulia utama,” J. Vis. Univ. Saintek Muhammadiyah, vol. 9, no. 2, pp. 24–36, 2023, doi: https://doi.org/10.56459/jv.v9i2.71.
T. A. Puspa, S. Hadi Wijoyo, and A. Rachmadi, “Perancangan User Interface (UI) Sistem Informasi Inventaris Barang Sekolah berbasis Web menggunakan Metode Human Centered Design (HCD) (Studi Kasus: SMKN 2 Blitar),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 4, pp. 1892–1901, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12597
A. Iftitah and R. Setyadi, “Penerapan Algoritma C.45 Untuk Analisis Pengadaan Peralatan dan Mesin Kantor,” J. Inf. Syst. Res., vol. 4, no. 2, p. 434?442, 2023, doi: DOI 10.47065/josh.v4i2.2673.
F. Rozak, I. Irawati, H. Hasgimianti, and M. Thahir, “Inventory Management of Educational Facilities and Infrastructure At State Vocational High School 2 Pekanbaru,” Tarbawi J. Keilmuan Manaj. Pendidik., vol. 6, no. 1, pp. 29–36, 2020, doi: https://doi.org/10.32678/tarbawi.v6i01.2212.
B. R. Silaen, M. Nasution, and R. Muti’ah, “Implementation of the ABC Analysis to the Inventory Management,” Int. J. Sci. Technol. Manag., vol. 5, no. 4, pp. 816–825, 2024, doi: https://doi.org/10.46729/ijstm.v5i4.1144.
I. K. P. D. S. Putra, I. W. G. Narayana, and I. M. Sudarsana, “Sistem Informasi Pengelolaan Data Inventaris Barang Pada Kantor Perbekel Desa Kutuh Berbasis Web,” in Prosiding Seminar Hasil Penelitian Informatika dan Komputer, SPINTER, 2024, pp. 546–550. [Online]. Available: https://spinter.stikom-bali.ac.id/index.php/spinter/article/view/321/304
R. A. Tjandrida and D. A. Dermawan, “Implementasi Algoritma Decision Tree pada Sistem Informasi Manajemen Inventarisasi Fakultas Vokasi UNESA,” J. Manaj. Inform., vol. 17, no. 01, pp. 2–8, 2025, [Online]. Available: https://ejournal.unesa.ac.id/index.php/jurnal-manajemen-informatika/article/view/68862
A. Hendrawan, A. Susanto, and B. J. Tama, “Implementasi Sistem Invetaris Manajemen Menggunakan Algorit,a C4.5 pada Djaya Motor,” J. Ris. dan Apl. Mhs. Inform., vol. 06, no. 01, pp. 76–85, 2025, doi: https://doi.org/10.30998/jrami.v6i01.10039.
E. D. Sinaga, A. Windarto, Perdana, and N. R. Alfadillah, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus?: Apotek Franch Farma),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 123–131, 2022, doi: https://doi.org/10.30865/klik.v2i4.328.
R. Pratama, B. Huda, E. Novalia, and H. Kabir, “Perbandingan Algoritma C4.5 dan Naïve Bayes dalam Menentukan Persediaan Stok,” J. Metik, vol. 6, no. 2, pp. 115–122, 2022, doi: https://doi.org/10.47002/metik.v6i2.379.
M. Fajri, I. T. Utami, and M. Maruf, “Comparison of C4.5 and C5.0 Algorithm Classification Tree Models for Analysis of Factors Affecting Auction,” Indones. J. Stat. Its Appl., vol. 6, no. 1, pp. 13–22, 2022, doi: https://doi.org/10.29244/ijsa.v6i1p13-22.
S. Devi Asri and A. Miftahul Huda, “IMPLEMENTATION OF THE C5.0 ALGORITHM IN CLASSIFICATION OF SOCIAL DATA (Case Study: Eligibility of BLT Acceptance in Condong Village, Singkawang City),” Bul. Ilm. Mat. Stat. dan Ter., vol. 12, no. 3, pp. 259–268, 2023, doi: https://doi.org/10.26418/bbimst.v12i3.66693.
R. Amalia and F. Citra, Teknik Pengambilan Keputusan, 1st ed. Indonesia: Penerbit RTujuh Mediaprinting, 2022.
W. Andriyani, K. Rudi, and A. Y. Wijaya, “Analisis Data Penerimaan Peserta Didik Baru Menggunakan Cross Validation dan Algoritma Decision Tree di SMA Negeri 1 Bandung,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2951–2956, 2024, doi: https://doi.org/10.36040/jati.v8i3.9603.
P. Riama, I. Deci, and S. Volvo, Algoritma Decision Tree Untuk Klasifikasi Tingkat Kepuasan Pelanggan. YAYASAN MUNANDAR MEMBANGUN INDONESIA, 2025.
A. D. Saputra and A. Qoiriah, “Penerapan Algoritma C4 . 5 Untuk Mengatur Persediaan Stok Barang Berbasis Website,” J. Informatics Comput. Sci., vol. 03, no. 04, pp. 481–493, 2022, doi: https://doi.org/10.26740/jinacs.v3n04.p481-493.
H. Yohan, Albert Leonardo and Christnatalis, “Penggunaan Metode C4.5 Untuk Kasus Klasifikasi,” JurnalPenelitianTeknikInformatik (Jutikomp), vol. 4, no. 1, pp. 519–524, 2021, doi: https://doi.org/10.34012/jutikomp.v4i1.1643.
Wijiyanto, A. I. Pradana, Sopingi, and V. Atina, “Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa,” J. Algoritm., vol. 21, no. 1, pp. 239–248, 2024, doi: https://doi.org/10.33364/algoritma/v.21-1.1618.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Decision Tree Untuk Memprediksi Pengelolaan Inventaris Sarana Pembelajaran Kampus
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Martini, Nani Agustina, Entin Sutinah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













