Pemodelan Topik pada Komunitas Ekspresi Emosi Negatif di Media Sosial X Menggunakan LDA


Authors

  • Rizal Muhammad Ramli Universitas Islam Indonesia, Sleman, Indonesia
  • Chanifah Indah Ratnasari Universitas Islam Indonesia, Sleman, Indonesia

DOI:

https://doi.org/10.47065/bulletincsr.v6i1.877

Keywords:

Text Analysis; Anger; Online Community; LDA; Social Media; Topic Modeling

Abstract

This study aims to map the thematic structure of conversations within a community of negative emotional expression on platform X, commonly referred to as the “Komunitas MARAH MARAH.” The primary problem explored in this study is how collective anger is formed and which issues dominate the discourse within this community. To address this, the study employs a text mining approach through several stages of textual data processing, including data scraping, preprocessing, dictionary-based normalization, Term Frequency–Inverse Document Frequency (TF-IDF) weighting, and topic modeling using Latent Dirichlet Allocation (LDA). A total of 75,032 tweets were collected and subsequently cleaned, resulting in 38,956 unique entries for further analysis. Topic modeling was conducted by evaluating several topic configurations, with the highest coherence score of 0.5367 achieved using a three-topic model. Further analysis revealed three dominant themes along with their proportional distributions: personal complaints and everyday emotional expression (50.5%), direct anger or generalized expressions toward particular groups (35.8%), and issues related to fraud and digital security (13.7%). These findings illustrate how collective anger is constructed, disseminated, and interpreted within online conversational spaces. This study is expected to serve as a foundation for further research on digital emotion, online community dynamics, and social issue mapping through public discourse.

Downloads

Download data is not yet available.

References

Y. Wang, J. Guo, C. Yuan, and B. Li, “Sentiment Analysis of Twitter Data,” Applied Sciences, vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211775.

H. Cam, A. V. Cam, U. Demirel, and S. Ahmed, “Sentiment analysis of financial Twitter posts on Twitter with the machine learning classifiers,” Heliyon, vol. 10, no. 1, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23784.

O. Sukmana et al., Sosiologi Digital: Transformasi Sosial di Era Teknologi. Yogyakarta: PT Star Digital Publishing, 2025. Accessed: Nov. 19, 2025.

H. R. Kuncoro, K. Hasanah, D. L. Sari, and E. Kurniawati, “Algorithmic Influence: Twitter’s Role in Shaping Public Discourse and Amplifying Radical Content,” in Proceedings of the 2nd International Conference on Advance Research in Social and Economic Science (ICARSE 2023), Atlantis Press, 2024, pp. 549–553. doi: 10.2991/978-2-38476-247-7_55.

J. Han, S. E. Lee, and M. Cha, “The secret to successful evocative messages: Anger takes the lead in information sharing over anxiety,” Commun Monogr, vol. 90, no. 4, pp. 545–565, Oct. 2023, doi: 10.1080/03637751.2023.2236183.

I. Z. Al Fatih, R. A. Putera, and Z. H. Umar, “Peran Algoritma Media Sosial dalam Penyebaran Propaganda Politik Digital Menjelang Pemilu,” Jurnal Kajian Stratejik Ketahanan Nasional, vol. 7, no. 1, Jun. 2024, doi: 10.7454/jkskn.v7i1.10090.

V. Morini, M. Sansoni, G. Rossetti, D. Pedreschi, and C. Castillo, “Participant behavior and community response in online mental health communities: Insights from Reddit,” Comput Human Behav, vol. 165, p. 108544, Apr. 2025, doi: 10.1016/j.chb.2024.108544.

S. Azzahrani, T. Lukmantoro, and S. R. Manalu, “EKSPRESI EMOSI NEGATIF DALAM MEDIA SOSIAL (STUDI PADA KOMUNITAS ‘MARAH-MARAH’ DI TWITTER),” Interaksi Online, vol. 12, no. 4, pp. 1016–1032, 2024, Accessed: Nov. 19, 2025. [Online]. Available: https://ejournal3.undip.ac.id/index.php/interaksi-online/article/view/47483

I. Z. Al Fatih, “Peran Media Sosial dalam Kampanye Politik di Indonesia Lima Tahun Terakhir: Antara Demokrasi dan Manipulasi Informasi,” COMSERVA?: Jurnal Penelitian dan Pengabdian Masyarakat, vol. 4, no. 7, pp. 2227–2237, Nov. 2024, doi: 10.59141/comserva.v4i7.2611.

Q. Zhang et al., “Analysis of the evolving factors of social media users’ emotions and behaviors: a longitudinal study from China’s COVID-19 opening policy period,” BMC Public Health, vol. 23, no. 1, Nov. 2023, doi: 10.1186/s12889-023-17160-y.

M. L. Joshi and N. Kanoongo, “Depression detection using emotional artificial intelligence and machine learning: A closer review,” Mater Today Proc, vol. 58, no. 1, pp. 217–226, 2022, doi: 10.1016/j.matpr.2022.01.467.

D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation,” in Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 1–14. doi: 10.18653/v1/S17-2001.

A. Hu and S. Flaxman, “Multimodal Sentiment Analysis To Explore the Structure of Emotions,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA: ACM, Jul. 2018, pp. 350–358. doi: 10.1145/3219819.3219853.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” Journal of Machine Learning Research, vol. 3, pp. 993–1022, Mar. 2003.

H. Jelodar et al., “Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey,” Multimed Tools Appl, vol. 78, no. 11, pp. 15169–15211, Jun. 2019, doi: 10.1007/s11042-018-6894-4.

B. Jiang, M. Karami, L. Cheng, T. Black, and H. Liu, “Mechanisms and Attributes of Echo Chambers in Social Media,” in International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction and Behavior Representation in Modeling and Simulation, 2021. doi: 10.48550/arXiv.2106.05401.

G. A. van Kleef and A. H. Fischer, “Emotional collectives: How groups shape emotions and emotions shape groups,” Cogn Emot, vol. 30, no. 1, pp. 3–19, Jan. 2016, doi: 10.1080/02699931.2015.1081349.

A. M. Raza, N. Aulia, and S. Sopian, “The Echo Chamber Effect: Analisis Sosiologis Peran Algoritma Media Sosial dalam Pembentukan Solidaritas dan Polarisasi Kelompok di Indonesia,” Jurnal Bincang Komunikasi, vol. 3, no. 1, pp. 39–52, 2025, Accessed: Nov. 19, 2025. [Online]. Available: https://jurnal.umj.ac.id/index.php/JBK/article/view/27736

Mahyuddin, Sosiologi Komunikasi: Dinamika Relasi Sosial di dalam Era Virtualitas. Makassar: Shofia - CV Loe, 2019.

D. L. Olson and D. Delen, Advanced Data Mining Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-76917-0.

D. Rifaldi, A. Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet ‘Mental Health,’” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, pp. 161–171, Apr. 2023, doi: 10.51454/decode.v3i2.131.

A. R. Lubis, Y. Y. Lase, D. A. Rahman, and D. Witarsyah, “Improving Spell Checker Performance for Bahasa Indonesia Using Text Preprocessing Techniques with Deep Learning Models,” Ingénierie des systèmes d information, vol. 28, no. 5, pp. 1335–1342, Oct. 2023, doi: 10.18280/isi.280522.

L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ Res Methods, vol. 25, no. 1, pp. 114–146, Jan. 2022, doi: 10.1177/1094428120971683.

D. M. Eler, D. Grosa, I. Pola, R. Garcia, R. Correia, and J. Teixeira, “Analysis of Document Pre-Processing Effects in Text and Opinion Mining,” Information, vol. 9, no. 4, p. 100, Apr. 2018, doi: 10.3390/info9040100.

S. Qaiser and R. Ali, “Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents,” Int J Comput Appl, vol. 181, no. 1, 2018.

M. Röder, A. Both, and A. Hinneburg, “Exploring the Space of Topic Coherence Measures,” in Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, New York, NY, USA: ACM, Feb. 2015, pp. 399–408. doi: 10.1145/2684822.2685324.

R. Albalawi, T. H. Yeap, and M. Benyoucef, “Using Topic Modeling Methods for Short-Text Data: A Comparative Analysis,” Front Artif Intell, vol. 3, Jul. 2020, doi: 10.3389/frai.2020.00042.

J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang, “A density-based method for adaptive LDA model selection,” Neurocomputing, vol. 72, no. 7–9, pp. 1775–1781, Mar. 2009, doi: 10.1016/j.neucom.2008.06.011.

W. J. Brady, J. A. Wills, J. T. Jost, J. A. Tucker, and J. J. Van Bavel, “Emotion shapes the diffusion of moralized content in social networks,” Proceedings of the National Academy of Sciences, vol. 114, no. 28, pp. 7313–7318, Jul. 2017, doi: 10.1073/pnas.1618923114.

S. Steinert and M. J. Dennis, “Emotions and Digital Well-Being: on Social Media’s Emotional Affordances,” Philos Technol, vol. 35, pp. 1–21, Jun. 2022, doi: 10.1007/s13347-022-00530-6.

Z. Waseem, T. Davidson, D. Warmsley, and I. Weber, “Understanding Abuse: A Typology of Abusive Language Detection Subtasks,” in 1st Workshop on Abusive Language Online, May 2017. Accessed: Nov. 22, 2025. [Online]. Available: https://arxiv.org/abs/1705.09899

A. Hamid, M. Alam, H. Sheherin, and A.-S. K. Pathan, “Cyber Security Concerns in Social Networking Service,” International Journal of Communication Networks and Information Security, vol. 12, no. 2, pp. 198–212, 2020, Accessed: Nov. 22, 2025. [Online]. Available: https://www.proquest.com/docview/2440678475?fromopenview=true&pq-origsite=gscholar&sourcetype=Scholarly%20Journals

H. Jelodar et al., “Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey,” Multimed Tools Appl, vol. 78, pp. 15169–15211, Jun. 2019, doi: 10.1007/s11042-018-6894-4.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pemodelan Topik pada Komunitas Ekspresi Emosi Negatif di Media Sosial X Menggunakan LDA

Dimensions Badge

ARTICLE HISTORY

Published: 2025-12-20

Abstract View: 125 times
PDF Download: 61 times

How to Cite

Rizal Muhammad Ramli, & Ratnasari, C. I. (2025). Pemodelan Topik pada Komunitas Ekspresi Emosi Negatif di Media Sosial X Menggunakan LDA. Bulletin of Computer Science Research, 6(1), 224-234. https://doi.org/10.47065/bulletincsr.v6i1.877

Issue

Section

Articles