Analisis Data Mining dengan Metode K-Means Clustering Dalam Pengelompokan Penggunaan Alat Kontrasepsi
DOI:
https://doi.org/10.47065/bulletincsr.v5i5.750Keywords:
Data Mining; K-Means Clustering; Contraceptives; Clustering; Family PlanningAbstract
Family Planning (KB) is a strategic government effort to suppress population growth and improve the quality of life. The availability of various types of contraceptives can delay unwanted pregnancies, including in women facing increased pregnancy risks. Based on this, this study aims to cluster contraceptive use. The K-Means Clustering method is an unsupervised learning algorithm used to group data into several clusters based on similar characteristics. This algorithm works by minimizing the distance between the data and the cluster center (centroid). The advantages of K-Means are its simplicity and speed in processing large data. This research variable uses data from the 2024 Family Data Collection of the BKKBN Representative Office of West Sumatra Province in West Pasaman Regency. Based on the application of the K-Means Clustering method to the contraceptive use data, the grouping is obtained into three clusters: low use of MKJP contraceptives, moderate use of MKJP contraceptives, and high use of MKJP contraceptives. This study contributes in the form of a data mining-based analysis model that is able to group contraceptive use patterns in a more structured and objective manner. By applying the K-Means Clustering method, this study produces information that can be used to identify the characteristics of each user group, so that relevant agencies can design more targeted contraceptive counseling and distribution strategies.
Downloads
References
D. & S. Yanti, E. M., Wirastri, “Edukasi Pentingnya Keluarga Berencana (KB) dalam meningkatkan Pengetahuan dan Pemilihan Alat Kontrasepsi pada Wanita Usia Subur (WUS) di Dusun Anjani Timur Desa Anjani Kecamatan Suralaga Kabupaten Lombok Timur,” Indones. J. Community Dedication, vol. 5, no. 1, pp. 7–12, 2023.
S. Sumarsih, “Hubungan Karakteristik Ibu Nifas Terhadap Pemilihan Metode Kontrasepsi Pascasalin Di Puskesmas Selopampang Kabupaten Temanggung,” Sinar J. Kebidanan, vol. 5, no. 1, pp. 1–14, 2023, doi: 10.30651/sinar.v5i1.17321.
BKKBN, “Peraturan Badan Kependudukan Dan Keluarga Berencana Nasional Republik Indonesia Nomor 1 Tahun 2023 Tentang Pemenuhan Kebutuhan Alat dan Obat Kontrasepsi Bagi Pasangan Usia Subur Dalam Pelayanan Keluarga Berencana,” Peratur. Menteri Kesehat. Republik Indones. Nomor 1 Tahun 2023, vol. 151, no. 2, pp. 10–17, 2023.
A. Fatchiya, A. Sulistyawati, B. Setiawan, and R. Damanik, “Peran Penyuluhan Keluarga Berencana dalam Meningkatkan Pengetahuan KB pada Pasangan Usia Subur (PUS) Kelompok Masyarakat Miskin,” J. Penyul., vol. 17, no. 1, pp. 60–71, 2021, doi: 10.25015/17202134151.
Y. Anwar, E. Amin, and A. H. Tiyas, “Hubungan Pengetahuan Ibu dan Dukungan Suami terhadap Pemakaian Metode Kontrasepsi Jangka Panjang (MKJP) di Kecematan Mamuju,” J. Akad. Kebidanan Kesehat. Baru, vol. 2024, 2024, [Online]. Available: http://jurnal.stikeskb.ac.id/index.php/akbid/article/view/29%0Ahttp://jurnal.stikeskb.ac.id/index.php/akbid/article/download/29/27
C. Setyorini, A. Dewi Lieskusumastuti, and L. Hanifah, “Faktor-Faktor Yang Mempengaruhi Penggunaan Metode Kontrasepsi Jangka Panjang (Mkjp): Scoping Review,” Avicenna J. Heal. Res., vol. 5, no. 1, pp. 132–146, 2022, doi: 10.36419/avicenna.v5i1.600.
B. Hakim, F. J. Kaunang, C. Susanto, J. Salim, and R. Indradjaja, “Implementasi Machine Learning Dalam Pengelompokan Musik Menggunakan Algoritma K-Means Clustering,” IDEALIS Indones. J. Inf. Syst., vol. 8, no. 1, pp. 74–83, 2025, doi: 10.36080/idealis.v8i1.3357.
Y. B. Pratama and A. Setiawan, “Implementasi Machine Learning Menggunakan Algoritma K-Means Untuk Klasifikasi Sekolah Dasar,” Resolusi Rekayasa Tek. Inform. dan Inf., vol. 4, no. 3, pp. 249–257, 2024, doi: 10.30865/resolusi.v4i3.1591.
M. Norshahlan, H. Jaya, and R. Kustini, “Penerapan Metode Clustering Dengan Algoritma K-means Pada Pengelompokan Data Calon Siswa Baru,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 6, p. 1042, 2023, doi: 10.53513/jursi.v2i6.9148.
D. A. Fakhri, S. Defit, and Sumijan, “Optimalisasi Pelayanan Perpustakaan terhadap Minat Baca Menggunakan Metode K-Means Clustering,” J. Inf. dan Teknol., vol. 3, pp. 160–166, 2021, doi: 10.37034/jidt.v3i3.137.
M. H. Abdurrohman, E. Haerani, F. Syafria, and L. Oktavia, “Implementasi K-Means Clustering Pada Data Pengelompokan Pendaftaran Mahasiswa Baru (Studi Kasus Universitas Abdurrab,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 138–147, 2024, doi: 10.36341/rabit.v9i1.4255.
S. Royal, “Perancangan Aplikasi Data Mining Untuk Menentukan Tingkat Kelarisan Produk Menggunakan Metode Clustering Dengan Algoritma K-Means,” J. Sci. Soc. Res., vol. 4307, no. 1, pp. 116–123, 2024, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR
F. S. Abdussalam Al Masykur, Siska Kurnia Gusti, Suwanto Sanjaya, Febi Yanto, “Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 5, pp. 8364–8372, 2024, doi: 10.36040/jati.v8i5.10541.
D. Dona and M. Rifqi, “Penerapan Metode K-Means Clustering Untuk Menentukan Status Gizi Baik Dan Gizi Buruk Pada Balita (Studi Kasus Kabupaten Rokan Hulu),” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 179–191, 2022, doi: 10.36341/rabit.v7i2.2171.
S. Maryam, R. Astuti, and F. M. Basysyar, “Optimalisasi Jumlah Cluster Data Sekolah Dasar (Sd) Menggunakan Algoritma K-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3640–3646, 2024, doi: 10.36040/jati.v7i6.8246.
J. A. S. Siregar and K. Handoko, “Jurnal Comasie Jurnal Comasie,” Sist. Pakar Untuk Mendeteksi Kerusakan Pompa Utama Elektr. Pemadam Gedung Bertingkat Berbas. Web, vol. 6, no. 2, pp. 40–51, 2021, [Online]. Available: http://ejournal.upbatam.ac.id/index.php/comasiejournal%0AJurnal Comasie ISSN (Online) 2715-6265%0APERANCANGAN
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Knowledge Discovery and Data Mining: Towards a Unifying Framework,” Proc. - 2nd Int. Conf. Knowl. Discov. Data Mining, KDD 1996, pp. 82–88, 1996.
P. Primadona and R. Fauzi, “Penerapan Data Mining Pada Penjualan Produk Elektronik,” Comput. Sci. Ind. Eng., vol. 9, no. 4, 2023, doi: 10.33884/comasiejournal.v9i4.7712.
Agung Nugraha, Odi Nurdiawan, and Gifthera Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 1–7, 2022.
H. Sibarani, Solikhun, W. Saputra, I. Gunawan, and Z. M. Nasution, “Penerapan Metode K-Means Untuk Pengelompokkan Kabupaten/Kdota Di Provinsi Sumatera Utara Berdasarkan Indikator Indeks Pembangunan Manusia,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 154–161, 2022, doi: 10.36040/jati.v6i1.4590.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Data Mining dengan Metode K-Means Clustering Dalam Pengelompokan Penggunaan Alat Kontrasepsi
ARTICLE HISTORY
How to Cite
Issue
Section
Copyright (c) 2025 Rahmad Rahmad, Sarjon Defit, Rini Sovia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).