Data Mining Peminatan Mata Kuliah Pilihan Mahasiswa Tingkat Akhir Jurusan Informatika Menerapkan Algoritma C4.5
DOI:
https://doi.org/10.47065/bulletincsr.v3i3.243Keywords:
Subject Specialization; Decision Trees; Data Mining; Analysis; Informatics; C4.5 AlgorithmAbstract
Determination of elective courses in the Informatics department, especially final year students so that they are in accordance with their wishes and interests is something that is expected. However, in fact it is not easy to be able to ascertain student interest in choosing appropriate special courses due to the limited information they have. Various obstacles and factors experienced by the campus in order to know the interest of students in choosing these courses according to the criteria are indeed quite confusing. Therefore the researchers took the initiative to create a decision support system to see the decisions made by final year students in choosing this specialization based on data mining as the chosen method. The choice of specialization will later be determined from three courses which are indeed elective courses that have been provided by the campus so that later on they can evaluate which courses are most in demand by final year students. A decision support system through an interest in elective courses using the data mining method is expected to help the campus evaluate interest in elective courses as desired and can optimize student academic achievement as well as being a record for the campus in the utilization of the elective courses given as the basis for lecture success furthermore. The results of this study are a decision tree that will show which subjects are interested or not interested in the 100 samples in this study.
Downloads
References
Tonni Limbong, Muttaqin Muttaqin, Akbar Iskandar, Agus Perdana Windarto, Janner Simarmata, Mesran Mesran, Oris Krianto Sulaiman, Dodi Siregar, Dicky Nofriansyah, Darmawan Napitupulu, Anjar Wanto, 2020, Sistem Pendukung Keputusan: Metode & Implementasi, Medan : Yayasan Kita Menulis.
Rifki Nur Afuddin, Dade Nurjannah; Sistem Rekomendasi Pemilihan Mata kuliah Peminatan Menggunakan Algoritma Kmeans dan Apriori (studi kasus: Jurusan S1 Teknik Informatika Fakultas Informatika); e-Proceeding of Engineering : Vol.6, No.1 April 2019 Page 2359
Budanis Dwi Meilani dan Achmad Fauzi Slamat, 2013, Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree, Surabaya : Institut Teknologi Adhi Tama Surabaya.
Yuli Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5”, Jurnal Edik Informatika, Vol. 2, No. 2, 2016
David Hartanto Kamagi, Seng Hansun,”Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa”, ULTIMATICS, Vol. VI, No. 1, Juni 2014.
A. A. Aldino Dan H. Sulistiani, Decision Tree C4.5 Algorithm For Tuition Aid Grant Program Classification (Case Study: Department Of Information System, Universitas Teknokrat Indonesia), Jurnal Ilmiah Edutic, Vol. 7, No. 1, Pp. 40-50, 2020.
Vista Anestiviya1 , A. Ferico Octaviansyah Pasaribu2; Analisis Pola Menggunakan Metode C4.5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus : Sman 1 Natar); Jurnal Teknologi dan Sistem Informasi (JTSI), Vol. 2, No. 1, pg 80 – 85, Maret 2021.
Utomo, D.P., Mesran, Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung, Jurnal Media Informatika Budidarma, vol. 4, April 2020.
Azwanti, N., & Elisa, E., Analisa Kepuasan Konsumen Menggunakan Algoritma C4.5, Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (SNISTEK), (3), 126–131, 2021.
Setio, P.B.N., et al., Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5, PRISMA : Prosiding Seminar Nasional Matematika, 2020.
Marlina, D., Bakri, M., Penerapan Data Mining Untuk Memprediksi Transaksi Nasabah Dengan Algoritma C4.5, Jurnal Teknologi dan Sistem Informasi (JTSI), Vol. 2, No. 1, Maret 2021.
Ordila, R., et al., Penerapan Data Mining Unutk Pengelompokkan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritman Clustering (Studi Kasus : Poli Klinik PT.Inecda), Jurnal Ilmu Komputer, Vol. 9, 2020.
Nabila, Z., et al., Analisis Data Mining Untuk Clustering Kasus Covid-19 di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, 2021.
A. A. Aldino Dan H. Sulistiani, “Decision Tree C4.5 Algorithm For Tuition Aid Grant Program Classification (Case Study: Department Of Information System, Universitas Teknokrat Indonesia),” Jurnal Ilmiah Edutic, Vol. 7, No. 1, Pp. 40-50, 2020.
Dai, W. and Ji, W., 2014. A Mapreduce Implementation of C4. 5 Decision Tree Algorithm. International Journal of Database Theory and Application, 7(1), pp.49-60.
Vista Anestiviya1 , A. Ferico Octaviansyah Pasaribu2; Analisis Pola Menggunakan Metode C4.5 Untuk Peminatan Jurusan Siswa Berdasarkan Kurikulum (Studi Kasus : Sman 1 Natar); Jurnal Teknologi dan Sistem Informasi (JTSI), Vol. 2, No. 1, Maret 2021, 80 - 85 E-ISSN: 2746-3699
Selvia Lorena Br Ginting, Wendi Zarman, Ida Hamidah, “Analisis Dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Memprediksi Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik”, Prosiding Seminar Nasional Aplikasi Sains & Teknologi, November 2014.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Data Mining Peminatan Mata Kuliah Pilihan Mahasiswa Tingkat Akhir Jurusan Informatika Menerapkan Algoritma C4.5
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Ratih Nurdiyani Sari, Imam Purwanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).